
1 3

Theor Appl Genet (2014) 127:1795–1803
DOI 10.1007/s00122-014-2341-8

Original Paper

Genomic prediction for rust resistance in diverse wheat landraces

Hans D. Daetwyler · Urmil K. Bansal · 
Harbans S. Bariana · Matthew J. Hayden · Ben J. Hayes 

Received: 31 July 2013 / Accepted: 29 May 2014 / Published online: 26 June 2014 
© Springer-Verlag Berlin Heidelberg 2014

rust (Sr) and stripe rust (Yr) responses across multiple 
years. Genomic Best Linear Unbiased Prediction (GBLUP) 
and a Bayesian Regression method (BayesR) were used 
to predict GEBVs. Based on fivefold cross-validation, the 
accuracy of genomic prediction averaged across years was 
0.35, 0.27 and 0.44 for Lr, Sr and Yr using GBLUP and 
0.33, 0.38 and 0.30 for Lr, Sr and Yr using BayesR, respec-
tively. Inclusion of PCR-predicted genotypes for known 
rust resistance genes increased accuracy more substantially 
when the marker was diagnostic (Lr34/Sr57/Yr18) for the 
presence-absence of the gene rather than just linked (Sr2). 
Investigation of the impact of genetic relatedness between 
validation and reference lines on accuracy of genomic pre-
diction showed that accuracy will be higher when each 
validation line had at least one close relationship to the ref-
erence lines. Overall, the prediction accuracies achieved in 
this study are encouraging, and confirm the feasibility of 
genomic selection in wheat. In several instances, estimated 
marker effects were confirmed by published literature and 
results of mapping experiments using Watkins accessions.

Introduction

Wheat is the world’s second most important food crop and 
is a major source of carbohydrates and protein in the human 
diet. The three rust diseases; namely leaf rust (Lr), stem 
rust (Sr) and stripe rust (Yr) are a major threat to wheat 
production (Murray and Brennan 2009). More than 50 loci 
for resistance to each of the three rust diseases have been 
genetically characterised and formally named (McIntosh 
et al. 2010), however, many of these genes have succumbed 
to matching virulence in respective pathogens. Identifica-
tion and characterisation of genetically diverse sources of 
resistance therefore remains a continuing challenge. The 
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generation of gene combinations in elite high yielding 
breeding material is challenging as it is difficult to confirm 
the definite presence of many genes through bioassays that 
often rely on linkage (Bariana et al. 2007). Implementing a 
genomic selection strategy could enable more rapid gains 
to be made for rust resistance, as all loci underlying vari-
ation in rust resistance, including those not yet identified, 
could be exploited simultaneously. Genomic selection is a 
two-step procedure, where genome wide DNA markers in 
linkage disequilibrium (LD) with genetic variants affecting 
the target trait are used to predict genomic estimated breed-
ing value (GEBV), and then selection decisions are made 
on the basis of these GEBVs (Meuwissen et al. 2001).

The potential for increased genetic gain using genomic 
selection has been recognised in wheat (Heffner et al. 2009, 
2010) and wheat breeding strategies using genomic selec-
tion have been proposed (e.g. Bernardo 2010). Genetic 
gain from genomic selection is linearly proportional to 
the accuracy of prediction, and therefore genomic predic-
tion research focuses on the accuracy of GEBV that can be 
achieved. In wheat, genomic prediction accuracies (based 
on cross-validation) have been reported for CIMMYT 
global wheat lines (Crossa et al. 2010), and biparental (Hef-
fner et  al. 2011a) and multi-family (Heffner et  al. 2011b) 
populations. All studies to date have achieved moderate 
to high accuracy (e.g. range 0.3–0.8) with relatively few 
markers. This is mainly due to the self-pollinating nature 
of wheat, which leads to a high level of LD. For example, 
Hao et  al. (2011) found moderate LD extended for 5  cM 
in diverse Chinese wheat lines. Similar estimates of LD 
were reported by Cavanagh et al. (2013) for the analysis of 
a worldwide collection of wheat cultivars and landraces. In 
biparental structures, within family LD, which can stretch 
for many Mb, can be exploited with genomic selection 
(Hayes et al. 2009; Heffner et al. 2011a). For across fam-
ily predictions, the level of LD in the population is impor-
tant. This depends on the effective population size which is 
a determinant of the number of independent chromosome 
segments (Goddard 2009), which in turn is a key parameter 
driving the accuracy of genomic prediction, along with the 
number of individuals with genotypes and phenotypes, the 
trait heritability, and the proportion of the genetic variance 
captured by the markers (Daetwyler et al. 2008, 2010; Erbe 
et al. 2013).

The “Arthur Watkins” collection is a unique poten-
tial reference population for genomic predictions of rust 
resistance. The collection consists of a large number of 
phenotypically diverse landraces collected from 32 coun-
tries in the 1920s to 1930s, which have been assayed for 
leaf rust, Yr and Sr response variation over multiple years. 
The aim of this paper was to investigate the accuracy of 
genomic prediction in a geographically diverse set of 
wheat landraces from the Watkins collection for field-based 

resistance to stem rust, leaf rust, Yrin Australia using trait 
data measured across several years and sites. Genomic 
Best Linear Unbiased Prediction (GBLUP) and a Bayesian 
regression method (BayesR) were used in a cross-valida-
tion scheme. The effect of including data for PCR mark-
ers linked to known rust resistance genes in genomic pre-
diction models was evaluated. The interplay of genomic 
prediction accuracy and relatedness of the validation and 
reference populations was also investigated. Finally, the 
predicted marker effects were cross-validated against pub-
lished rust resistance loci and quantitative trait loci (QTL). 
The implications for genomic prediction in breeding wheat 
cultivars with durable rust resistance are discussed.

Methods

Plant materials

A set of 247 accessions from the Watkins Collection was 
supplied by Mr Greg Grimes of the Australian Winter Cere-
als Collection, Tamworth, and they were selected from a 
total of 838 accessions from field evaluations on the basis 
of plant type, rust resistance and maturity. Despite some 
maturity differences, all landraces included in this study 
flowered by the first week of October. Non T. aestivum 
accessions were removed. The list of accessions included 
in this study is given in Supplementary Table S1.

Phenotyping

Records on leaf, stem, and Yr resistance were collected 
in field conditions across several years (2005, 2006, 2007 
and 2008). Scores for rust response were consistent across 
seasons. Field trials were conducted at the Lansdowne 
and Karalee sites of the University of Sydney, with each 
accession grown in a single 1 m row. Disease scores were 
recorded for all rust traits using a scale of 1–9, where 9 
was highly susceptible (Bariana et al. 2007). For Yr, mul-
tiple records were taken within each year because disease 
progression could be observed well, and in 2008 disease 
scores were collected at both field trial sites (Table 1).

Genotyping

The 247 wheat accessions were genotyped using the Infin-
ium iSelect 9  K single nucleotide polymorphism (SNP) 
assay, the content of which is reported to have minimal 
ascertainment bias for the analysis of diverse wheat lan-
draces (Cavanagh et al. 2013). Genotyping was performed 
on the iScan instrument according to the manufacturer’s 
protocols (Illumina). SNP genotype calling was performed 
using GenomeStudio v2011.1 software (Illumina) and the 
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genotype calling algorithm generated by Cavanagh et  al. 
(2013). Monomorphic markers and SNPs with more than 
10  % missing data (due to the presence of null alleles or 
poor genotype call rates) were removed. Similarly, acces-
sions with more than 15  % missing genotypes were 
removed. Any missing genotypes for the remaining wheat 
accessions were imputed using a random forest approach 
with the R package missForests (Rutkoski et al. 2013; Stek-
hoven 2013). Each wheat accession was also genotyped 
for DNA markers linked to Lr34/Sr57/Yr18 and Sr2, as 
described in Lagudah et al. (2006) and Mago et al. (2011), 
respectively. The final dataset after all edits included 206 T. 
aestivum accessions.

Genomic prediction

A genomic relationship matrix (G) was calculated accord-
ing to Yang et  al. (2010). To improve the numerical sta-
bility of G, loci with an allele frequency  <0.01 were 
removed. Furthermore, duplicate accessions as deter-
mined by <50 opposing homozygotes were removed. 
Principal component analysis was performed on G using 
the R function eigen (R Core Development Team 2010). 
G was sorted by country of origin and the first principal 
component and visually assessed using a heat map, where 
increasing colour intensity indicates higher relatedness of 
accessions.

Genomic best linear unbiased prediction (GBLUP) was 
run in ASReml 3.0 (Gilmour et al. 2009) using the follow-
ing Restricted Maximum Likelihood (REML) model:

where y a vector of rust phenotypes, 1 is a vector of ones, 
μ is the mean, X and Z are design matrices, b is a vec-
tor of fixed effects, g is a vector of random additive genetic 
effects distributed as N

(

0, σ 2
g G

)

, σ 2
g  is the genetic variance 

captured by the markers, e is a random residual term with 
N

(

0, σ 2
e I

)

, and σ 2
e  is the error variance. Multiple records 

per accession were weighted equally in GBLUP analyses.  

Genomic heritabilities were estimated as h2 = σ̂ 2
g

σ̂ 2
g +σ̂ 2

e
.  

Fixed effects included year in all models as well as  
site when available (Table  1). PCR marker tests for the 

(1)y = 1µ + Xb + Zg + e

presence-absence of Sr2 and Lr34/Sr57/Yr18 were included 
as fixed effects for these genes in additional GBLUP analy-
ses for Sr, Lr, and Yr.

Best linear unbiased estimates

Best linear unbiased estimates (BLUE) of rust scores were 
calculated using the raw phenotype data (Henderson 1984), 
to account for fixed effects such as year and location. These 
estimates were then used as “phenotypes” for BayesR and 
also for calculating the accuracy of genomic prediction, free 
of year and location effects. The following model was fitted 
in ASReml (Gilmour et al. 2009): y = 1µ + Xb + Zu + e∗,  
where u is a vector of random accession effects distributed 
as N

(

0, σ 2
IDI

)

, σ 2
ID is the variance due to accessions, e∗ is  

a vector of random residuals distributed as N
(

0, σ 2
e∗I

)

,  
and σ 2

e∗ is the error variance. Fixed effects included year 
and site (Table  1). Multiple records per accession were 
weighted equally in BLUE analyses. A multi-variate analy-
sis where each year or environment is considered a separate 
trait may be another useful way to treat this data. Genotype 
by environment interactions (G × E) are known to affect plant 
genomic predictions (e.g. Heslot et al. 2014). Two interactions, 
accession by site and accession by year, were fitted for the Yr 
trait as random terms in the BLUE models to determine the 
proportion of the error and accession variance they explain.

The BLUEs were used to implement the Bayesian 
genomic prediction method, BayesR (Erbe et al. 2012). The 
difference between GBLUP and BayesR is that BayesR 
assumes a priori that some SNPs will have no associated 
effect on the trait, and that some SNPs can have a moderate 
to large effect. This is achieved using a mixture of four nor-
mal distributions with increasing variance to model marker 
effects. In contrast, the prior assumption on GBLUP is that 
all SNPs have small effects that come from the same nor-
mal distribution. BayesR applied the model:

where û is a vector of BLUE solutions, μ* is the BayesR 
analysis mean, W is a design matrix relating û to random 
marker effects (m), and e∗∗ is the BayesR error. BayesR is 
more fully described in Erbe et  al. (2012). The main dif-
ference of BayesR to other Bayesian genomic prediction 

(2)û = 1µ∗+ Wm + e∗∗

Table 1   Number of 
observations (N), number 
of replicates (nr) and mean 
rust scores (rust) for leaf 
rust (Lr), stem rust (Sr) and 
stripe rust (Yr) across years, 
sites (K—Karalee, LDN—
Lansdowne)

Trait 2005 2006 2007 2008 2008

LDN LDN LDN LDN K

N nr rust N nr rust N nr rust N nr rust N nr rust

Lr 172 1 5.8 201 1 3.9 187 1 4.4 – – – – – –

Sr 198 1 5.1 198 1 6.0 193 1 5.6 – – – – – –

Yr 197 1 4.2 402 2 4.1 400 2 3.6 443 3 3.5 287 3 4.2
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methods is its modeling of four marker variance distribu-
tions, where each distribution explains gradually more of 
the genetic variance but contains fewer markers. Thus, the 
variance attributed to a marker in the four distributions was: 
σ 2

1
= 0, σ 2

2
= 0.0001σ 2

g , σ 2
3

= 0.001σ 2
g , or σ 2

4
= 0.01σ 2

g ,  
and σ 2

g  was estimated with GBLUP model 1 using REML. 
A Dirichlet distribution was used as the source of priors for 
the proportion of markers in each distribution. All priors 
were identical to those used by Erbe et al. (2012). Ten par-
allel chains of 100,000 iterations (20,000 burn-in) were run 
for each subset and marker effects were calculated as the 
mean of all parallel non-burn-in iterations. In GBLUP fixed 
effects were fitted simultaneously with G (Eq. 1), whereas in 
the BayesR implementation BLUEs were first calculated and 
then fitted. Fitting BLUEs in GBLUP resulted in very similar 
accuracy to simultaneous fitting of fixed effects. PCR marker 
tests were not included as fixed effects in BayesR analyses. 
However, it is expected that including them would affect 
analyses similarly in BayesR as in GBLUP.

Accuracies for genomic prediction were calculated in 
a cross-validation design that was repeated five times and 
each replicate divided the data into five random folds of 
accessions, where all records of an accession were con-
tained within onefold to avoid prediction of an accession 
from its own phenotypes. For each cross-validation fold, the 
genomic prediction accuracy was calculated by correlating 
the GEBVs with the BLUEs [e.g. r (GEBV, û)]. When PCR 
marker test genotypes for Sr2 and Lr34/Sr57/Yr18 were fit-
ted as fixed effects, the correlation was also calculated as 
r (GEBV + PCReffect, û). The mean and standard devia-
tion across all 25-folds was reported. This cross-validation 
method was used in both the GBLUP and BayesR analyses. 
The accuracy of an individual’s BLUE (û) would be higher 
than 

√
h2, due to repeated observations. Thus, to approxi-

mate the accuracy of a true breeding value, the correlations 
were divided by the mean accuracy of validation accessions 
calculated from the prediction error variance (PEV) of 
GBLUP as mean(rPEV) = 1

N

∑N
i=1 (1 − PEVi)/σ̂

2
g , where 

N is the number of accessions with observations.
Finally, a BayesR run with exactly the same priors and 

number of iterations but using all accessions was per-
formed to estimate marker effects for comparison with the 
effects of known loci. These were scaled by the adjusted 
phenotypic standard deviation of the analysed trait to allow 
for comparisons across traits.

It has been shown in livestock populations that the relat-
edness of the validation to the reference populations has 
a substantial influence on genomic prediction accuracy 
(Clark et  al. 2012; Daetwyler et  al. 2012; Habier et  al. 
2010; Pszczola et  al. 2012). Two main genomic relation-
ship measures were calculated using the genomic rela-
tionship matrix (G). First, the mean genomic relationship 
(Gmean) of each validation line was calculated as the mean 

of all G off-diagonals shared with reference lines. Second, 
the mean of a certain number (X) of largest relationships 
(GtopX) of a validation line was calculated by collecting 
the X largest G off-diagonals shared with reference lines 
and calculating their mean. The parameter X was varied 
from 1, 5, 10, 20, 30, 40, to 50, to investigate the number 
of high genomic relationships that were most associated 
with genomic prediction accuracy. Gtop10 had been shown 
to be more indicative of genomic prediction accuracy than 
Gmean (Clark et al. 2012; Pszczola et al. 2012). These rela-
tionship measures were calculated in each cross-validation 
fold (five per cross-validation replicate). Subsequently, 
within a cross-validation replicate, the GEBVs and rela-
tionship measures for all accessions were collected. The 
mean for each relationship measure was calculated across 
the 206 lines and it was divided in two groups: more related 
(>mean) and less related (<mean). Prediction accuracy [r 
(GEBV, û)] was then calculated within high and low groups 
and regressed onto the corresponding mean group (high or 
low relatedness) relationship measure to investigate which 
relationship measure explained more of the accuracy of 
genomic prediction. The significance (P values) and good-
ness-of-fit values (R2) were then used to determine the rela-
tionship measure most associated with prediction accuracy.

Results

Genetic relatedness among wheat accessions

A total of 7,364 SNPs were successfully genotyped across 
the 247 wheat accessions using the 9 K iSelect SNP bead 
chip assay. After removing monomorphic markers and 
SNPs with more than 10 % missing data, a total of 5,568 
SNPs remained. Further quality filtering (see Materials and 
methods), reduced the population size for subsequent anal-
yses to 206 T. aestivum accessions.

Principal component analysis showed no clear rela-
tionships among the 206 Watkins accessions (Fig.  1). 
The amount of genetic variation explained by the first 
and second principal components was 10.3 and 5.5  %, 
respectively. No clear clustering by country of origin was 
observed. Regional labelling revealed that the first principal 
component tended to loosely cluster European, Australian 
and North African lines, however, Asian and Middle East-
ern accessions showed no such trend.

A heat map of the G matrix (Fig. 2) revealed a wide spec-
trum of low to moderate relatedness between accessions 
within countries. In each country, there tended to be a small 
number of accessions that were moderately related. Some 
pairs of accessions in different countries were also moder-
ately related. However, overall, within country relatedness 
did not differ markedly to across country relatedness.



1799Theor Appl Genet (2014) 127:1795–1803	

1 3

Genomic prediction for rust resistance traits

Genomic prediction accuracies for the rust resistance traits 
using the basic model (without PCR marker tests for Sr2 
and Lr34/Sr57/Yr18 fitted as fixed effects) ranged from 
0.27 (Sr) to 0.48 (Yr) for GBLUP (mean across traits 0.42) 

and from 0.30 (Yr) to 0.38 (Sr) for BayesR (mean 0.34, 
Table  2). Fitting the genotypes predictive of Lr34/Sr57/
Yr18 and Sr2 increased the accuracy slightly for all traits 
(Table 2). More substantial increases were observed for the 
Lr34/Sr57/Yr18 than for Sr2, which could be expected as 
the Lr34/Sr57/Yr18 marker is diagnostic for the presence-
absence of the gene. The inclusion of Sr2 in the Sr model 
only had a minimal effect on prediction accuracy. Sr2 is an 
introgression from Yarosalv emmer (McIntosh et al. 1995), 
and is therefore unlikely to be present in common wheat 
landraces. Furthermore, the Sr2 marker is not diagnostic 
and may not be perfectly linked to the causative Sr gene, 
therefore its presence does not necessarily mean that the 
causative mutation is present in the Watkins accessions. 
Hence, it was anticipated the Sr2 marker would be less 
beneficial than the Lr34/Sr57/Yr18 marker for genomic 
prediction.

The genomic heritabilities estimated using the REML 
model (Eq.  1) were 0.49, 0.29, 0.52 for Lr, Sr, and Yr, 
respectively (Table 2). In general, the level of genomic pre-
diction accuracy for each rust trait reflected the level of her-
itability. This was expected since the accuracy of genomic 
prediction is governed by the heritability, number of acces-
sions, and number of independent chromosome segments 
(Daetwyler et al. 2010; Goddard 2009; Hayes et al. 2009). 
It should be noted that other factors also affect the accu-
racy of genomic prediction. For example, marker density is 
important if collectively the markers are not dense enough 
to capture all causative variants (Daetwyler 2009; Erbe 
et al. 2013).

Regressions of adjusted phenotypes on GEBVs were 
calculated to check for possible bias in the evaluation. 

PC1

P
C

2

−0.1

0.0

0.1

0.2

−0.15 −0.10 −0.05 0.00 0.05 0.10

Asia
Australia
Europe
MiddleEast
NorthAfrica
Russia+FrmrUSSR
Unkown

Fig. 1   Plot of the first and second principal components (PC). Acces-
sions are labelled by geographical region of origin

Fig. 2   Heat map of genomic 
relationship matrix. Accessions 
are sorted by country of origin 
and principal component 1. Col-
ours indicate extent of related-
ness, with white indicating least 
related and red more related. 
Not all countries are labelled, 
a complete list of country of 
origin is available in Table S1



1800	 Theor Appl Genet (2014) 127:1795–1803

1 3

The slope of this regression has an expectation of 1. 
Slopes of <1 or >1 (i.e. bias) mean that GEBVs over or 
under predict the phenotype. Slopes that deviate consid-
erably from expectations are important when GEBVs are 
combined with or compared to non-genomic measures 
of genetic merit (such as pedigree information), as their 
scales might differ considerably leading to a bias towards 
or against selecting individuals with a GEBV. The inter-
cepts were close to zero for all rust traits (data not shown) 
and the slopes ranged from 0.3 to 1.4 (Table  3), with a 
mean of 0.7. The most extreme values were observed for 
Sr, where fitting with Sr2 as a fixed effect led to a large 
downward bias (0.3). As discussed above, Sr2 was not 
expected to be present in the Watkins accessions and thus 
fitting it resulted in an inappropriate model and significant 
downward bias. Generally, when the inclusion of the trait-
linked marker increased accuracy and it also reduced bias.

Relationship between genomic prediction accuracy 
and relatedness of the validation and reference populations

The genomic relationship of validation to reference lines 
has been shown to be an important factor in the accuracy of 
genomic prediction (Clark et al. 2012; Habier et al. 2007, 

2010; Pszczola et al. 2012) and it is, therefore, an impor-
tant component of reference population design. However, 
it is not clear what relationship measure should be used 
to design optimal reference populations for genomic pre-
diction. Two genomic measures of relatedness of valida-
tion accessions to the reference population were investi-
gated: mean genomic relationship (Gmean) and mean of 
top X relationships (GtopX). The number of high genomic 
relationships (X) most associated with genomic predic-
tion accuracy were investigated using several values (1, 
5, 10, 20, 30, 40, 50). Gtop1 (i.e. the highest relationship 
of validation to reference lines) was most associated with 
genomic prediction accuracy in all three rust traits (Range 
P value 3 × 10−6 to 2 × 10−4, R2 0.83–0.94, Supplemen-
tary Table S3). In the following we therefore concentrate 
on the Gmean and Gtop1 relationship measures.

The connection between genetic relatedness and 
genomic prediction accuracy was investigated by separat-
ing the validation accessions into two groups that were 
more and less related to the reference population than the 
mean of the respective relationship measure. The mean 
genomic relationship (Gmean) was close to zero (−0.010), 
as expected because the Yang et al. (2010) algorithm effec-
tively sets the mean relationship to zero (Supplementary 
Table S4) (negative relationships simply mean that pairs of 
individuals are less related than pairs of individuals in the 
artificially set base). Genomic prediction accuracy was also 
not associated with Gmean (R2 0.04, Fig. 3). In contrast, the 
mean (across validation accessions) of the highest relation-
ship (Gtop1) (0.988) was much higher, also as expected. 
The Gtop1 measure was also more highly associated with 
prediction accuracy (R2 0.60, Fig.  3). These results sug-
gest that Gtop1 is a good indicator of genomic prediction 
accuracy and that accuracy will be high if at least one close 
relationship exists between validation and reference.

Genotype by environment interactions

The focus of this paper was on the genomic prediction accu-
racy that could be achieved without explicitly considering 
G × E (year and site effects were of course fitted as fixed 

Table 2   Genomic heritability (h2) and prediction accuracy (SD) for leaf (Lr), stem (Sr), and stripe (Yr) rust from Genomic Best Linear Unbi-
ased Prediction (GBLUP) and Bayesian Regression (BayesR), SD standard deviations

a  Basic model
b  Basic model including PCR marker predicted genotypes fitted as fixed effects

Trait h2 GBLUP BayesR

Fivefold (SD)a Fivefold (SD)b Lr34/Sr57/Yr18 Fivefold (SD)b Sr2 Fivefold (SD)a

Lr 0.486 0.351 (0.096) 0.477 (0.135) – 0.328 (0.119)

Sr 0.294 0.270 (0.122) 0.314 (0.143) 0.284 (0.132) 0.381 (0.078)

Yr 0.515 0.437 (0.103) 0.461 (0.112) – 0.300 (0.180)

Table 3   Slope of the regression (SD) of adjusted phenotypes on 
genomic breeding values which is used to measure evaluation bias

SD standard deviations
a  Basic model
b  Basic model including PCR marker predicted genotypes fitted as 
fixed effects

Trait GBLUP BayesR

Fivefolda Fivefoldb Lr34/Sr57/
Yr18

Fivefoldb 
Sr2

Fivefolda

Lr 0.417 
(0.144)

0.519 (0.220) – 1.157 (0.468)

Sr 0.321 
(0.223)

0.366 (0.264) 0.302 
(0.200)

1.052 (0.847)

Yr 0.740 
(0.200)

0.695 (0.208) – 1.358 (0.406)
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effects in our models). However, we did investigate the 
extent of G × E in Yr by fitting random accession-by-year 
(ID × Year) and accession-by-site (ID × Site) effects in the 
BLUE models. Both interaction terms explained a signifi-
cant proportion of the phenotypic variation, as determined 
by differences in the log likelihood of the models (Supple-
mentary Table S5). The ID × Site effect explain a greater 
proportion of the variance than the ID × Year effect. Both 
interactions terms, when fitted, reduced the error variance 
and also the variance due to accessions. The most signifi-
cant model included a random accession effect, ID × Site 

and ID × Year. Further improvements in genomic prediction 
accuracy may be possible by including G × E effects.

Marker effects for rust resistance traits

In an effort to determine if markers of large to moderate 
effect were contributing to our accuracy of genomic pre-
diction, and to further investigate the genetic basis for rust 
resistance, we investigated whether the largest BayesR 
marker effects were concordant with the location of known 
rust resistance loci. The BayesR SNP effects were first 
scaled by the adjusted phenotypic standard deviation and 
positioned on a consensus genetic SNP map (Cavanagh 
et  al. 2013). For the three rust resistance traits, no very 
large marker effects were identified (Fig. 4, Supplementary 
Table S2), suggesting that many loci contributed towards 
trait variation. In general, the magnitude of marker effects 
reflected the heritability of the traits. On average, marker 
effects for Sr were lower than Lr and Yr, consistent with 
lower Sr heritability (Table 2; Fig. 4). The improved resolu-
tion in marker effects observed for Yr (Fig.  4), compared 
to Lr and Sr, likely reflected the availability of more (about 
threefold) phenotypic records for this trait (Table 1).

Genomic regions for rust resistance

We compared genetic map positions (as reported in 
Cavanagh et  al. 2013) of the first 40 predicted SNPs with 
largest marker effects for each trait (Supplementary Table 
S2) with the chromosomal location of published and unpub-
lished rust resistance loci. By comparing trait-linked SNPs 
identified by genetic mapping of rust resistance loci in 
crosses conducted with some of the Watkins accessions 
included in this study (Bansal and Bariana, unpublished 
results), we were able to validate in five instances the associ-
ation of the SNP allele identified by genomic prediction with 
a specific rust resistance locus. For example, SNPs predicted 
for Yr and Lr resistance on chromosomes 4A, 5B, 4D and 
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Fig. 4   Mapped marker effects in phenotypic standard deviations (SD) for leaf (Lr), stem (Sr), and stripe (Yr) rust SNPs are ordered (left to 
right) by position on a consensus SNP genetic map (Cavanagh et al. 2013). Chromosome labels refer to closest peak
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genetically mapped to the resistance loci formally named 
as Yr51, Yr47, and Lr67, respectively. Similarly, markers 
effects predicted on chromosomes 1A, 2B, 3B and 2B, 5A, 
7B genetically mapped to yet unnamed resistance loci for Yr 
and Sr, respectively. (Supplementary Table S2). Typically, 
between one-third and one half of the largest 40 marker 
effects mapped to chromosomal regions that contained pub-
lished resistance loci and QTL (Supplementary Table S2).

Discussion

We have investigated the accuracy for genomic predic-
tion of rust resistance traits in a diverse sample of wheat 
landraces. The general level of accuracy was moderate 
with an average accuracy across traits of 0.38, which is 
comparable to other published studies in wheat and maize 
(Crossa et al. 2010; Heffner et al. 2011b). The inclusion of 
genotypes (predicted using PCR markers) for known rust 
resistance genes as fixed effects in the genomic prediction 
models generally yielded increases in prediction accuracy. 
Prediction accuracy increased more dramatically (e.g. Lr 
from 0.35 to 0.48) when including the Lr34/Sr57/Yr18 
genotypes than when using the Sr2 marker. However, Sr2 
is not expected in wheat landraces because it is an intro-
gression. Furthermore, because the marker for Sr2 is not 
a gene-based marker, its presence in an accession may not 
necessarily mean Sr2 is present. In contrast, the Lr34/Sr57/
Yr18 markers are diagnostic, which further explains their 
respective predictive abilities.

The accuracy of genomic prediction for a complex trait, 
where genetic variation is the result of mutations at a large 
number of loci, is mainly influenced by the trait heritabil-
ity, the proportion of the genetic variance captured by the 
markers (i.e. marker density), reference population size, and 
effective population size. The relatedness of the reference 
and validation populations is implicitly contained in the term 
effective population size and, thus, it is a key determinant of 
genomic prediction accuracy. We are not aware of an esti-
mate for effective population size for our dataset. Therefore, 
to put our results in context with other studies, we investi-
gated the extent of relatedness using the genomic relation-
ship matrix (Fig. 2). The genomic relationship of half-sibs in 
outbred populations is expected to be ~0.25 in the Yang et al. 
(2010) genomic relationship matrix. In livestock, such high 
relatedness in the data yields high accuracy (e.g. Habier et al. 
2010). In our study of a diverse set of inbred wheat lines, 
the Gtop1 measure was most associated with accuracy and 
values substantially higher than 0.25 were observed, even 
in the less related group (Supplementary Table S4). Thus, it 
is not surprising that relatively high accuracies are achieved 
with 206 accessions. While our dataset was globally diverse, 
it seems that it also included a sufficiently large number of 

close relatives to enable good genomic prediction (Table S3, 
S4). Our dataset was too small to further separate the vali-
dation sets into even less related groups, as this would have 
raised the sampling variance of our correlations (Fisher 
1915) to an unacceptably high level making inference impos-
sible. However, it is expected that the prediction accuracy is 
low for accessions without close relatives in the reference. 
The implications for reference populations are clear. They 
need to be sufficiently diverse to predict a wide variety of 
lines, but, ideally, they should also contain at least one line 
that is highly related to a selection candidate to achieve accu-
rate genomic prediction.

BayesR mapping revealed few markers of large effect 
(Fig.  4), suggesting that many trait loci contributed to 
genetic variation for leaf rust, Sr and Yr resistance. Nev-
ertheless, it was possible to validate many of the marker 
effects predicted across the three traits using genetic map-
ping populations involving the Watkin accessions used in 
this study, and by comparing the genetic map position for 
predicted marker effects with the known location of pub-
lished rust resistance loci and QTL. Our results shows the 
potential utility of genomic prediction for breeding wheat 
varieties with more durable rust disease resistance. The 
use of GEBVs to choose parents for the next generation of 
crossing, combined with introgression of specific desirea-
ble alleles, can be used to accelerate the rate of genetic gain 
in breeding programs by combining favourable alleles for 
rust resistance. Similarly, the selection of accessions that 
possess SNP alleles with large predicted marker effects not 
associated with known rust resistance loci could be used 
to further characterise potentially new sources of resist-
ance. We are currently performing genetic analysis in the 
remaining landraces that were predicted to carry potential 
new sources of resistance, both to confirm the genomic pre-
dictions and increase genetic diversity for rust resistance in 
Australian wheat breeding programs.
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